Измеритель уровня и громкости звука тр-702M, тр-702M SDI

ТРВУ.468262.702.ТО

Паспорт, техническое описание и инструкция по эксплуатации

ЗАО «Трактъ», Санкт-Петербург 2025 г.

Оглавление

Оглавление	2
Список таблиц	3
Список рисунков	3
Краткое техническое описание	4
1 Назначение	4
2 Различие версий	5
3 Основные технические характеристики	5
4 Комплект поставки	6
5 Ссылка на электронную версию технического описания	6
6 Устройство и работа	6
6.1 Подготовка к работе	6
6.2 Схема соединения блоков	7
6.3 Ограничение на длину кабелей подключаемых к блоку ТР-702М	8
6.4 Блок ввода ТР-702-1М	8
6.5 Блок индикации ТР-702-2М	9
7 Работа с интерфейсом блока ТР-702-2М	10
7.1 Основное окно	10
7.2 Окно выбора источника	12
7.3 Окно выбора настроек	13
7.4 Окно системных настроек	14
7.5 Окно настроек чувствительности аналогового входа	15
7.6 Окно настроек измерителя уровня	16
7.7 Окно настроек измерителя громкости	19
7.8 Окно настроек коррелометра и гониометра	21
7.9 Окно статистики	22
7.10 Окно внешнего вида	23
8 Обновление прошивки	23
8.1 Обновление прошивки на ТР-702-1М	23
8.2 Обновление прошивки на ТР-702-2М	24
9 Цоколевка	25
10 Монтаж	25
10.1 Монтаж ТР-702-1М	25
10.2 Монтаж ТР-702-2М	
11 Выполняемые стандарты	
12 Маркировка	27
13 Указания мер безопасности	27
14 Транспортировка и хранение	27
15 Реализация и утилизация	27
16 Гарантийные обязательства	
17 Свидетельство о приемке	28
18 Адрес изготовителя	

Список таблиц

Таблица 3.1 - Основные технические характеристики	5
Таблица 4.1 - Комплект поставки	6
Таблица 9.1 - Цоколевка блока питания 5В (разъём miniXLR 4 pin)	
Таблица 9.2 - Цоколевка блока питания 48В (разъём miniXLR 3 pin)	

Список рисунков

Рисунок 6.1- Схема соединения блоков ТР-702-1М и ТР-702-2М	7
Рисунок 6.2 - Ограничение на длину кабелей, подключаемых к Блоку	8
Рисунок 6.3 - Задняя панель блока ТР-702-1М	8
Рисунок 6.4 - Задняя панель блока ТР-702-2М	9
Рисунок 7.1 - ТР-702-2М Основное окно (два варианта)	10
Рисунок 7.2 - Окно выбора источника сигнала	12
Рисунок 7.3 - ТР-702-2М Окно настроек индикатора	13
Рисунок 7.4 - Окно системных настроек	14
Рисунок 7.5 - Настройки чувствительности аналогового входа	15
Рисунок 7.6 - Настройки измерителя уровня	17
Рисунок 7.7 - Настройки измерителя громкости	20
Рисунок 7.8 - Настройки коррелометра	21
Рисунок 7.9 - Окно статистики и состояния	22
Рисунок 7.10 - Окно внешнего вида	23
Рисунок 9.1 - Цоколёвка разъёма питания 2,1х5,5 мм	25
Рисунок 10.1 - Установка одного блока ТР-702-1М в стойку RACK 19"	25
Рисунок 10.2 - Крепление уголка к блоку ТР-702-1М	25
Рисунок 10.3 - Установка двух блоков ТР-702-1М в стойку RACK 19"	26
Рисунок 10.4 - Соединение двух блоков ТР-702-1М	26

Краткое техническое описание

Настоящее техническое описание и инструкция по эксплуатации предназначены для технического персонала, работающего с блоками Измерителя уровня и громкости звука ТР-702-1М и ТР-702-2М (далее по тексту - «Блоки»).

Входной (ТР-702-1М) и индикаторный (ТР-702-2М) Блоки предназначены только для совместной работы и должны соединяться между собой патч-кордом RJ-45 категории не ниже 5е. По этому же патч-корду индикаторный блок получает питание от входного блока в штатном режиме работы.

1 Назначение

Блоки позволяют производить измерение уровня и громкости аналоговых или цифровых звуковых сигналов в соответствии с законом от 04.11.2014 № 338-ФЗ «О внесении изменений в статьи 14 и 15 Федерального закона "О рекламе"», по которому телеканалам и радиостанциям запрещается превышать громкость рекламы относительно других транслируемых программ по показателям:

- M-loudness (моментальная громкость);
- S-loudness (кратковременная громкость);
- I-loudness (интегральная громкость);
- диапазон громкости LRA.

Результаты измерения отображаются на экране блока ТР-702-2М.

Блоки изготовлены в соответствии с рекомендациями Европейского радиовещательного союза (European Broadcasting Union, EBU) и Международного союза электросвязи (International Telecommunication Union, ITU), применяемыми вещателями для измерения и контроля громкости звуковых сигналов при аудиомикшировании теле- и радиопрограмм:

- EBU R-128;
- EBU Tech 3341;
- EBU Tech 3342;
- EBU Tech 3343;
- EBU Tech 3344;

ITU-R BS.1770-3;

Помимо измерения громкости звукового сигнала устройство позволяет измерять уровень сигнала в каждом аудиоканале и отображать его на столбиковых индикаторах с динамикой классического пикового/квазипикового студийного измерителя уровня. Также в устройстве имеется коррелометр с настраиваемой шириной окна интеграции.

2 Различие версий

Основные отличия блока TP-702M от блока TP-702:

- частичный переход на новую элементную базу;
- повышение отказоустойчивости;
- добавление кнопки выключения в блок индикации TP-702-2;
- внесение изменений в конструкцию корпуса.

Остальные параметры блоков аналогичны. Последние версии ПО совместимы со всеми версиями блоков.

Блок TP-702 SDI отличается от блока TP-702 наличием платы SDI.

Блок ТР-702-2М с 2023 года выпускается в новом дизайне (серийный номер 867 и далее).

3 Основные технические характеристики

Входные сигналы:

- симметричный аналоговый сигнал;
- цифровой сигнал формата AES/EBU;
- цифровой сигнал формата SPDIF;
- цифровой сигнал формата SDI (SD-SDI и HD-SDI).

Таблица 3.1 - Основные технические характеристики

Параметр	Значение
Протокол передачи по сети	проприетарный
	Блок питания:
Питание ТР-702-1М	Вход 220 В, 50 Гц
	Выход +48В, 15Вт
Питание ТР-702-2М штатное	РоЕ, 48В ±2% от ТР-702-1М
Питание ТР-702-2 опция,	Блок питания +5В, 10Вт
серийный номер 1-110	(в комплект не входит)
Питание ТР-702-2М опция,	Блок питания +48В ±2%, 15Вт
серийный номер 111 и далее	(в комплект не входит)
Потребляемая мощность (не более)	15, Вт
Габаритные размеры блока ТР-702-1М	145х218х43,6, мм
(без уголков для крепления в стойку и ножек)	
Вес блока ТР-702-1М	0.62, кг
(без уголков для крепления в стойку и ножек)	
Габаритные размеры блока ТР-702-2М	101х113х215, мм
Вес блока ТР-702-2M	0.68, кг
Вес комплекта TP-702М в упаковке	2.05, кг

Поддерживаются входные цифровые сигналы форматов AES и SPDIF с частотами дискретизации 32 / 44,1 / 48 КГц.

Входной аналоговый сигнал оцифровывается с частотой 48 кГц. Максимальная амплитуда сигнала по аналоговому входу - +24 dBu.

Уровень шумов аналогового тракта прибора - 90 dBFS.

4 Комплект поставки

Таблица 4.1 - Комплект поставки

Nº	Наименование и тип	Кол-во
1	Блок ТР-702-1М (входной)	1
2	Уголок для установки в стойку 19", короткий	1
3	Уголок для установки в стойку 19", длинный	1
4	Винты для крепления уголков к блоку. DIN965, M3x6	4
5	Блок питания +48В, 15Вт	1
6	Блок ТР-702-2М (индикаторный)	1
7	Патч-корд категории 5е, экранированный	1
8	Паспорт, техническое описание	1
	и инструкция по эксплуатации	T
9	Комплект заземления	1
	(кабель 2.8м, винт DIN7985 M4, шайбы)	1
10	Упаковка	1

5 Ссылка на электронную версию технического описания

Все актуальные технические описания и декларации соответствия к устройствам производства компании Тракт доступны на странице <u>https://tract.ru/pdf</u> и по QR-коду:

6 Устройство и работа6.1 Подготовка к работе

Перед началом использования Блоков необходимо выполнить следующие действия:

• соединить блоки TP-702-1M и TP-702-2M экранированным патч-кордом категории 5е согласно схеме на Рисунке 6.1

- подать питание на блок ТР-702-1М
- подать сигналы на блок ТР-702-1М
- выбрать источник сигнала на блоке TP-702-2M.

После включения и загрузки прибора на индикаторном блоке касанием кнопки "Меню" можно вызвать страницу настроек прибора и отредактировать необходимые отображаемые параметры.

Рисунок 6.1- Схема соединения блоков TP-702-1M и TP-702-2M

6.3 Ограничение на длину кабелей подключаемых к блоку TP-702M.

*проверено на кабеле Canare DA202AT
**проверено на кабеле PCnet 65604A UTP 5е кат.
***проверено на кабеле Draka HD PRO 0.8/3.7 AF - 75 Ом

Рисунок 6.2 - Ограничение на длину кабелей, подключаемых к Блоку

6.4 Блок ввода ТР-702-1М

Внешний вид задней панели блока ТР-702-1М показан на Рисунке 6.3.

Рисунок 6.3 - Задняя панель блока ТР-702-1М

На задней панели блока TP-702-1М расположены следующие разъемы (слева направо):

• 2 разъёма XLR розетка «Аналог (Вход Л, Вход П) для подключения аналогового сигнала;

• разъём XLR розетка "AES" для подключения цифрового сигнала формата AES/EBU;

• разъём RCA розетка "SPDIF" для подключения цифрового сигнала формата SPDIF;

• разъёмы BNC "SDI" являются входом и выходом сигнала SDI соответственно;

• разъём "USB" с кнопкой справа используется для обновления прошивки блока TP-702-1M;

- разъём RJ-45 "Ethernet (PoE)" для подключения индикаторного блока;
- разъем miniXLR "+48В 15Вт" для подключения блока к адаптеру питания.

6.5 Блок индикации ТР-702-2М

Внешний вид задней панели блока ТР-702-2М показан на Рисунке 6.4.

Рисунок 6.4 - Задняя панель блока ТР-702-2М

На задней панели блока ТР-702-2М расположены (слева направо):

• разъем 2,1х5,5 мм "+48В 15Вт" служит для подключения блока к адаптеру питания;

- разъём USB 2.0 тип А «Firmware» используется для обновления прошивки;
- разъём RJ-45 "Ethernet (PoE)" используется для подключения к блоку ввода;
- кнопка выключения питания и индикатор питания.

Блок работает под управлением ОС Linux и отвечает за:

• прием звуковых потоков через интерфейс Ethernet;

• вычисление всех измеряемых и отображаемых величин (уровни, громкость, корреляция);

- отображение индикаторов уровня и громкости;
- взаимодействие с пользователем через сенсорный экран;
- управление работой вычислителя, который считает значения индикаторов.

7 Работа с интерфейсом блока ТР-702-2M 7.1 Основное окно

Основное окно имеет две настройки внешнего вида - Контроль(слева) и Режиссер (справа). Внешний вид основного окна показан на Рисунке 7.1.

Рисунок 7.1 - ТР-702-2М Основное окно (два варианта)

Рассмотрим работу Блока на примере окна с внешним видом Контроль. Основное окно делится логически на три зоны – левая, средняя.

В левой зоне основного окна находятся:

• Максимум пиковых уровней и истинных пиковых уровней сигнала;

• 2-канальный (стерео) квазипиковый индикатор уровня. Над столбиками индикатора уровня показаны единицы измерения уровня "dBFS" / "dBTP" / "dBu";

• Шкала коррелометра.

В средней зоне основного окна находятся:

- Окно отображения численных значений громкости:
 - Максимум М-громкости за время от последнего сброса;
 - Максимум S-громкости за время от последнего сброса;
 - Значение громкости (I-loudness по BS-1770);
 - Значение границ диапазона громкости (LRA по EBU Tech 3341: диапазон/нижнее/верхнее);
- Индикатор громкости EBU R-128;
- Гониометр.

В правой зоне основного окна расположены (сверху вниз):

- Окно I Интервал измерения I-громкости/LRA;
- Таймер I Время интеграции от последнего сброса в формате ЧЧ:ММ:СС;

• Кнопка ПАУЗА/ПРОДОЛЖИТЬ - приостановка и продолжение процесса измерения без сброса интегральных значений (измеритель может находиться в двух состояниях: активном и приостановленном);

• Кнопка СБРОС - сброс интегральных значений без изменения состояния измерителя;

• История I – Здесь сохраняются четыре последних результата измерения Ігромкости. После нажатия кнопки СБРОС текущее значение І-громкости записывается на верхнюю позицию Истории. Предыдущие измерения сдвигаются вниз;

• Кнопка ВХОД - Кнопка выбора источника. Открывает окно выбора входных сигналов для измерителя громкости и пиковых индикаторов. Кнопка горит красным цветом в случае отсутствия соединения с Блоком ввода;

• Кнопка МЕНЮ - Кнопка вызова меню открывает окно выбора опций и редактирования параметров устройства.

В верхней зоне основного окна также расположены (слева направо):

- Имя устройства (редактируется через раздел меню «Внешний вид»;
- Кнопки выбора режима отображения основного окна Контроль и Режиссёр.

7.2 Окно выбора источника

Внешний вид окна показан на Рисунке 7.2. Это меню позволяет выбрать активный вход звукового сигнала. Для многоканального источника SDI выбирается пара каналов звука.

Активным может быть только один вход:

- Analog
- AES
- SPDIF
- Stereo SDI[1-2]
- Stereo SDI[3-4]
- Stereo SDI[5-6]
- Stereo SDI[7-8]

<u>Примечание</u>: перечень входов может изменяться в соответствии с конструкцией TP-702-1M.

7.3 Окно выбора настроек

При нажатии кнопки "МЕНЮ" на основном окне прибора открывается окно выбора страницы настроек (или информационной страницы), Рисунок 7.3:

Настройки
> Аналоговый вход
> Измеритель уровня
> Измеритель громкости
> Коррелометр, гониометр
> Статистика
> Внешний вид
> Системные
Закрыть

Рисунок 7.3 - ТР-702-2М Окно настроек индикатора

Всего имеется шесть таких страниц:

- 1. Настройки чувствительности аналогового входа
- 2. Настройки измерителя уровня
- 3. Настройки измерителя громкости
- 4. Настройки коррелометра
- 5. Окно статистики и состояния
- 6. Настройки внешнего вида основного окна
- 7. Окно системных настроек

Ниже приводится подробное описание каждой страницы настроек.

Большинство настроек устройства сохраняется после корректного выключения и повторного включения прибора.

7.4 Окно системных настроек

Вид данного окна показан на Рисунке 7.4.

😳 Системные	
Параметры соединения	
IP-адрес входного модуля	127.0.0.1
ТСР порт входного модуля	5001
UDP порт индикатора	5011
Автовыбор UDP порта	
IP-адрес/Порт индикатора	127.0.0.1:51117
Настройки	
Язык	Russian 🗸
Версии	
Версия ПО 1.5 Nov 8 2019 17:0	1:37
Протокол	2
Вх.модуль	123.456.FOXWARE
Управление питанием	
Выключить устройство	
Готово	Отмена

Рисунок 7.4 - Окно системных настроек

В данном окне находятся важные общие настройки устройства и информация:

• секция "параметры соединения": IP-адрес и порт входного модуля, соединенного с вычислительным устройством; "UDP порт" - порт на самом вычислительном устройстве, куда входной модуль отправляет аудио потоки; IP-адрес и порт на индикаторном блоке, соединённый с входным модулем;

• кнопка калибровки электронного тракта аналогового входа устройства (входной усилитель и АЦП). Кнопка подсвечена красным цветом, если калибровка устройства не производилась или была сброшена;

• выбор языка меню, настроек и основной панели устройства (русский/английский);

• версия прошивки устройства, а также версия протокола обмена с входным модулем, и версия прошивки входного модуля (если известна);

• кнопка отключения питания индикаторного блока устройства. После нажатия на эту кнопку устройство примерно через 30 секунд отключается, и можно снять с него напряжение питания.

ВАЖНО: Перед отсоединением индикаторного блока прибора от сети питания отключайте прибор только программной кнопкой «Выключить устройство», которая находится в окне системных настроек. С целью сохранения целостности и качества носителей информации устройства, не отключайте устройство от сети питания без процедуры выключения.

7.5 Окно настроек чувствительности аналогового входа

Вид данного окна настроек показан на Рисунке 7.5.

Рисунок 7.5 - Настройки чувствительности аналогового входа

АЦП прибора выдает уровень 0 dBFS при входном уровне на аналоговом входе равном +24dBu. Уровень шумов аналогового тракта и АЦП прибора, приведённый к максимальному уровню 0 dBFS, равен -92 dB. При использовании аналогового входа вычислитель отсекает все входные сигналы с уровнем меньше -84dBFS, чтобы измерительные алгоритмы (уровень, громкость, корреляция) не учитывали собственный шум аналогового тракта прибора.

Некоторые виды реализованных в приборе пиковых/квазипиковых индикаторов уровня имеют шкалы, проградуированные в относительных децибелах (dBFS). Для таких шкал уровень нуля децибел задаётся настройкой «Уровень 0 dBFS»

на данной странице в единицах напряжения dBu (т.е. децибелах от уровня 0,775 вольт). Страница доступна и используется только тогда, когда прибор переключен на использование аналогового входа.

Для использования аналогового входа прибора необходимо провести его калибровку. Если процедура калибровки не выполнялась или устройство не может найти результатов калибровки, на данной странице появляется специальное напоминание «Необходимость выполнения калибровки прибора». Данные калибровки сохраняются как и прочие настройки после корректного выключения питания прибора. Кнопка вызова страницы "КАЛИБРОВКА" находится на странице системных настроек (см. Рисунок 7.4Рисунок 7.4).

Для проведения калибровки на вход прибора от измерительного генератора подается синусоидальный сигнал с уровнем, соответствующим +12dBu, и нажимается кнопка "КАЛИБРОВКА". После данной процедуры прибор начинает вносить требуемые поправки во все измеренные значения так, что уровень OdBFS на относительных шкалах прибора соответствует поданному на аналоговый вход сигналу с уровнем, соответствующим выбранной чувствительности.

7.6 Окно настроек измерителя уровня

Вид данного окна настроек показан на Рисунке 7.6Рисунок 7.6.

В окне настроек измерителя уровня возможно:

• выбрать алгоритм измерения уровня (Peak/TruePeak) или пресет типовых измерителей уровня;

• установить динамику срабатывания столбика индикатора (время атаки);

• установить динамику возврата столбика индикатора (время возврата);

• установить шкалу индикатора и выполнить привязку нуля, если она проградуирована в единицах, отличных от dBFS (тип шкалы);

• установить границы раскраски цветовых зон столбиков индикаторов (граница красной зоны, граница зеленой зоны);

• установить наличие дополнительных указателей пиков на столбиках ("крышечек") и время их удержания;

• выбрать максимальный уровень, который будет отображаться в основном окне.

Используемые алгоритмы вычисления пиковых уровней:

• Peak - поиск максимума во входном оцифрованном потоке (в основном окне над пиковым индикатором отображается надпись "dBFS");

• True Peak - вычисление пиковых уровней сигнала с повышением ЧД в 4 раза и интерполяцией на КИХ фильтре (в соответствии со стандартным алгоритмом ITU-R BS.1770-3 Annex 2; при этом в основном окне индикатор помечен как "dBTP"). Этот алгоритм используется только в измерителе с соответствующим названием.

Рисунок 7.6 - Настройки измерителя уровня

Возможные **установки динамики срабатывания индикаторов** измерителя уровня:

• 0 - индикатор прибора реагирует мгновенно даже на единственную выборку входного сигнала;

• 5 мс/10 мс - при подаче входного синусоидального сигнала 0 dBFS длительностью 5 мс/10 мс столбик индикатора доходит до уровня -2dBFS.

Возможные установки времени возврата индикаторов измерителя уровня:

• ступенчато в диапазоне от 0,5 до 5,0 секунд;

• заданное время интерпретируется как время падения столбика на 20дБ при полном снятии входного сигнала. Скорость падения столбика прибора - линейная в децибелах.

Типы шкал:

• относительные шкалы в единицах dBFS/dBTP - 40/60/90 децибел. Верхний предел шкал dBFS всегда 0dB, для dBTP шкал предусмотрена зона переполнения +3dB;

• шкалы типичных приборов, градуированные в единицах dBu. Эти шкалы используются только в режимах эмуляции типовых приборов измерения уровня (см. ниже).

Последний параметр на странице - "уровень нуля" - действует только для шкал, проградуированных в dBu, и устанавливает положение нуля шкалы индикатора уровня:

• для цифровых входов - задается в единицах dBFS в диапазоне значений входного цифрового сигнала

• для аналогового входа - задается в dBu.

Первый селектор на данной странице установок - "тип измерителя" – имеет две группы значений. Первая группа – универсальные индикаторы (Peak/True peak) – позволяет выбрать алгоритм вычисления пиковых уровней, отображаемых на столбиковых индикаторах, и вручную настроить шкалу и динамику индикатора отдельными установками.

Вторая группа значений – пресеты типовых студийных измерителей уровня – влияет на множество параметров сразу, устанавливая значения параметров алгоритма, динамики и шкалы для прибора заданного типа. Для второй группы используется только первый алгоритм вычисления уровня (обычно пиковый). Тип шкалы и установки динамики поведения столбика индикатора фиксируется пресетом. Настроить можно только положение нуля шкалы для шкал, градуированных в dBu.

Все возможные положения селектора "тип измерителя" перечислены ниже.

Универсальные (для этих типов можно выбрать любую из шкал dBFS, и любую желаемую динамику):

• Peak - настраиваемый пиковый/квазипиковый измеритель. Для этого типа можно выбрать любую из шкал dBFS и любую желаемую динамику;

• True Peak - аналогично предыдущему, но с алгоритмом "True Peak", и динамика срабатывания не регулируется (только безынерционная - "0").

Пресеты типовых измерителей уровня (шкала и установки динамики фиксируются пресетом):

• DIN PPM - параметры аналогичны измерителю DIN:

время срабатывания – 5 мс, время возврата - 1,7 с, шкала от -50 до +5 dBu;

• GOST1 - параметры аналогичны измерителю ГОСТ 21185-75 Тип I: время срабатывания - 5 мс, время возврата - 1,7 с, шкала от -40 до +4 dBu;

• GOST2 - параметры аналогичны измерителю ГОСТ 21185-75 Тип II: время срабатывания - 5 мс, время возврата - 3,0 с, шкала от -20 до +3 dBu;

• BBC - параметры аналогичны измерителю BBC PPM:

время срабатывания - 10 мс, время возврата - 2,3 с, шкала от -12 до +12 dBu с шагом 4dB;

18

Inertionless - параметры аналогичны измерителю используемым

в программах DAW: безынерционный подъём, время возврата - 1,7 с, шкала 60dBFS.

Работа измерителя уровня в отношении калибровки и использования шкал несколько отличается при использовании:

- для аналогового входа;
- любого из цифровых входов SDI, AES/EBU, SP/DIF.

При подаче испытуемого сигнала через аналоговый вход для правильной работы прибора необходимо провести калибровку с помощью источника тестового сигнала (см. подробности в описании системного меню).

Если при выбранных установках измерителя уровня используется одна из **dBFS/dBTP шкал**, то:

 для аналогового входа – нуль шкалы соответствует установленной чувствительности прибора (выбирается на отдельной странице настроек "Аналоговый вход"). Например, если выбрана чувствительность аналогового входа +15dBu, то именно этой величине соответствует значение 0 dBFS или 0 dBTP на шкале столбика измерителя уровня;

• для цифровых входов прибор показывает входной оцифрованный сигнал "как есть". То есть, значения в канале SDI, или AES/EBU, в точности соответствуют оцифровке шкалы. Привязка шкалы dBFS входного цифрового сигнала к шкале dBu (или другой абсолютной шкале) является внешним по отношению к прибору фактором.

Если при выбранных установках измерителя уровня используется одна из **dBu шкал**, то положение нуля шкалы индикатора уровня задаётся параметром "уровень нуля":

• для аналогового входа - задается в абсолютных единицах входного напряжения dBu;

• для цифровых входов - задается в единицах dBFS в диапазоне значений входного цифрового потока прибора, должно иметь значение OdBFS или меньше (отрицательную величину).

7.7 Окно настроек измерителя громкости

Вид данного окна настроек показан на Рисунке 7.7.

В основном окне имеется три столбиковых индикаторы, отображающих громкость - М-громкость (по BS.1770-3), S-громкость и I-громкость.

На данной странице выбирается тип одной из предписанных EBU R-128 (Tech3341) шкал LU - либо EBU +9, либо EBU +18. Отдельная настройка устанавливает, где находится ноль выбранной LU шкалы на шкале LUFS.

Переключателями в группе "численные значения" можно включать и выключать цифровые показания величин І-громкость, LRA и максимумов М-громкости и S-громкости. Эти величины измеряются прибором с учетом хранящейся истории измерения и сбрасываются кнопкой "СБРОС".

Измеритель громкости	
Измеритель громкости	
Граница красной зоны, LU	5,0
Граница зеленой зоны, LU	0,0
Тип шкалы M/S-громк.	EBU +18 🗸
Уровень нуля, LUFS	-23,0
Интервал измер. І-громк/LRA	00:05:00
Численные значения	
Максимум М-громк.	
Максимум S-громк.	
І-громкость	
Диап. громк. (LRA)	
Настройка цвета	
Цвет макс. М-громк.	255.255.0
Цвет макс. S-громк.	255.255.0
Цвет І-громкости	255.255.0
Цвет диап. громк. (LRA)	0.210.255
Готово	Отмена

Рисунок 7.7 - Настройки измерителя громкости

Параметр "интервал измерения I/LRA" задает время интегрирования прибором значений I-громкость, LRA и максимумов М-громкости и S-громкости. Этот интервал можно задать в пределах от 10 секунд до 24 часов. Когда прибор достигает установленного времени интегрирования от начала запуска измерений, он продолжает измерение четырех параметров, пересчитывая их за установленный интервал измерения от текущего момента назад на установленное время интегрирования, то есть переходит в режим "скользящего интегрирования". Показания времени в основном окне всегда соответствуют текущему интервалу измерения. Кнопкой СБРОС можно в любой момент сбросить состояние измерителя громкости.

<u>Примечание</u>: параметр "глубины интегрирования" не влияет на максимумы результатов измерения уровня peak и/или true peak, они всегда накапливаются от последнего нажатия кнопки СБРОС.

Остальные настройки данной страницы управляют цветовой разметкой столбика и цветами отображения числовых индикаторов текущих значений I-громкости, LRA и максимумов М-громкости и S-громкости.

<u>Примечание</u>: шкала LUFS, по сути, непосредственно соответствует шкале dBFS для цифровых входов. Для аналогового входа шкала LUFS связана с dBu через переключатель чувствительности аналогового входа – см. информацию о считывании шкал в предыдущем разделе.

7.8 Окно настроек коррелометра и гониометра

Вид данного окна настроек показан на Рисунке 7.8.

🐵 Коррелометр, гониометр	
Параметры коррелометра	
Время интеграции коррелятора (мс)	3000 ms 🗸 🗸
Параметры гониометра	
Усиление сигнала гониометра, dB	6.0
Яркость точек гониометра	
Центральная точка	1.00
Боковые точки	0.35
Угловые точки	0.15
Настройки цвета гониометра	
Цвет точек	0.255.255
	▶
Готово	Отмена

Рисунок 7.8 - Настройки коррелометра

У коррелометра есть единственная настройка, которая позволяет установить размер окна интегрирования для вычисления коэффициента корреляции от 100 миллисекунд до 3 секунд.

У гониометра можно установить усиление сигнала, выбрать яркость точек и цвет.

7.9 Окно статистики

Вид данного окна показан на Рисунке 7.9.

Отатистика	
Счетчики UDP пакетов	
Правильных пакетов	10116645
Пропавших пакетов	147
Поздних пакетов	0
Неправильных пакетов	0
Отброшеных пакетов	0
Доля хороших пакетов	1,0
Нагрузка на процессор	
Основной DSP цикл	0,015
Задержка очереди (мс)	33,0
Цикл громкости	0,003
Период обновл. громкости (мс)	0,1
Состояние аудио потока	
Измеренная ЧД	43740,8
Входная ЧД	44100
Признак захвата ЧД	true
Готово	Отмена

Рисунок 7.9 - Окно статистики и состояния

Окно статистики показывает счетчики хороших и плохих UDP пакетов от входного модуля измерителя для контроля качества соединения между входным и вычислительным модулями.

Данные вычислительной нагрузки носят информационный характер.

В секции «Состояние аудио потока» приводится частота дискретизации, измеренная вычислительным модулем.

7.10 Окно внешнего вида

Вид данного окна показан на Рисунке 7.10.

Внешний вид		
Параметры		
Название устройства		TP 702-2M
Опорные уровни		
Индикатор уровня, dB		0,0
Индикатор громкости, dB		-12,0
Опорные точки		
М-громкость	-3,0	6,0 (I)
S-громкость	-9,0	-3,0 I
І-громкость	-30,0	-9,0 I
Цвета опорных точек		
М-громкость		0.255.0
S-громкость		0.255.0
І-громкость		0.195.255
Готово		Отмена

Рисунок 7.10 - Окно внешнего вида

В этом окне можно изменить название устройства: после нажатия на название устройства появляется окно для ввода нового названия.

Опорные уровни и опорные точки позволяют отметить в главном окне необходимые пользователю фрагменты. Здесь же можно выбрать цвет, которым они будут отмечены.

8 Обновление прошивки

8.1 Обновление прошивки на ТР-702-1М

Необходимо устанавливать последнюю версию ПО и прошивки (firmware) на TP-702-1M и TP-702-2M.

Установка последней версии ПО или прошивки только на один блок приведет к некорректной работе. Например, блоки **не смогут установить соединение** друг с другом.

Актуальная версия прошивки блока TP-702-1М доступна по ссылке: http://redmine.digispot.ru/projects/digispot/wiki/TP-702_Измеритель_громкости_и_уровня

Файл прошивки имеет имя firmware.bin.

Для обновления прошивки необходимы:

- компьютер под управлением ОС Windows 7 или новее;
- кабель USB тип А тип В;
- файл прошивки firmware.bin;
- USB-носитель с файлом обновлений.

Для установки обновления необходимо проделать следующие действия:

- отключить кабель питания от TP-702-1M;
- соединить кабелем USB тип А тип В компьютер и TP-702-1М;
- нажать и удерживать кнопку рядом с разъемом USB на блоке TP-702-1M;
- подключить кабель питания к TP-702-1M;
- отпустить кнопку;
- в проводнике Windows найти и открыть появившийся диск с именем TR-702;
- заменить имеющийся файл прошивки firmware.bin на новый;
- отключить кабель питания от TP-702-1M.

8.2 Обновление прошивки на ТР-702-2М

Необходимо устанавливать последнюю версию ПО и прошивки (firmware) на TP-702-1M и TP-702-2M.

Текущая версия ПО Измерителя уровня и громкости звука отображается в пункте меню Меню-Системные-Настройки-Версия. **Актуальная версия обновления** приложения Измерителя уровня и громкости звука расположена по ссылке: <u>http://redmine.digispot.ru/projects/digispot/wiki/Измеритель уровня и громкости звука (TP-702) v2</u>

Файл обновления имеет имя **update_xxx.ebm**, где xxx – номер версии.

Для установки обновления необходимо проделать следующие действия:

• подготовить обычный USB накопитель, отформатированный под FAT32, с обновлением в корневом каталоге (файл update_xxx.ebm);

• вставить накопитель в USB разъем устройства и подать питание;

• дождаться загрузки приложения измерителя громкости (появление основного графического экрана измерителя);

• открыть пункт меню Меню-Системные-Настройки-Версия и убедиться, что отображается новая версия приложения;

• если нужно, ввести IP-адрес входного модуля;

• выключить устройство через пункт меню Меню-Системные-Настройки-Выключить устройство;

• после выключения вынуть USB накопитель.

9 Цоколевка

Цоколевка блока питания 5В (разъём miniXLR 4 pin) представлена в Таблице 9.1. Таблица 9.1 - Цоколевка блока питания 5В (разъём miniXLR 4 pin)

№ контакта	Сигнал
3	+
2	-

Цоколёвка блока питания 48В 2,1х5,5 мм представлена в Таблице 9.2, на Рисунке 9.1. Таблица 9.2 - Цоколевка блока питания 48В (разъём miniXLR 3 pin)

№ контакта	Сигнал
2	+
3	-

Рисунок 9.1 - Цоколёвка разъёма питания 2,1x5,5 мм

10 Монтаж 10.1 Монтаж ТР-702-1М

Монтаж проводится при отключенном питании Блока.

Блок ТР-702-1М может устанавливаться как на столе, так и в стойке RACK 19" с помощью уголков из комплекта (Рисунок 10.1). Каждый уголок крепится к блоку двумя винтами M3x6 DIN965 (отмечены кружками на Рисунке 10.2).

Рисунок 10.1 - Установка одного блока ТР-702-1М в стойку RACK 19"

Рисунок 10.2 - Крепление уголка к блоку ТР-702-1М

Возможно соединение двух блоков друг с другом для более компактной установки в стойку (Рисунок 10.3). Для этого нужно снять верхние крышки и использовать крепёжные отверстия для уголков. Блоки скрепляются тремя винтами M3x6 DIN965 (отмечены кружками на Рисунке 10.4).

Рисунок 10.3 - Установка двух блоков TP-702-1M в стойку RACK 19"

Корпус прибора должен быть заземлен с помощью винта М4. Винт, шайбы и кабель заземления 2.8 м входят в комплект поставки.

Рисунок 10.4 - Соединение двух блоков ТР-702-1М.

10.2 Монтаж ТР-702-2М

Блок индикатора ТР-702-2М имеет несколько способов крепления:

- С помощью настольной подставки, входящей в комплект;
- С помощью стандартного крепления VESA50 (в комплект не входит).

Для подключения к TP-702-1М использовать экранированный патч-корд категории 5е.

11 Выполняемые стандарты

Блок разработан в соответствии с:

• **ГОСТ ІЕС 62311-2013** «Оценка электронного и электрического оборудования в отношении ограничений воздействия на человека электромагнитных полей»;

• **ГОСТ IEC 60950-1-2014**, «Оборудование информационных технологий. Требования безопасности»;

• **ГОСТ IEC 61000-3-2-2021** (разделы 5 и 7) «Электромагнитная совместимость (ЭМС). Часть 3-2 Нормы эмиссии гармонических составляющих тока (оборудование с входным током не более 16 А на фазу)»;

• **ГОСТ CISPR 24-2013** (раздел 5) «Совместимость технических средств электромагнитная. Оборудование информационных технологий. Устойчивость к электромагнитным помехам. Требования и методы испытаний».

• ГОСТ Р 52742-2007 «Каналы и тракты звукового вещания. Типовые структуры. Основные параметры качества. Методы измерений»;

• ГОСТ 32136-2013 (раздел 5) «Межгосударственный стандарт. Совместимость технических средств электромагнитная. Устойчивость к электромагнитным помехам

профессиональной аудио-, видео-, аудиовизуальной аппаратуры и аппаратуры управления световыми приборами для зрелищных мероприятий. Требования и методы испытаний»;

• **ГОСТ IEC 60065-2013** «Межгосударственный стандарт. Аудио-, видео- и аналогичная электронная аппаратура. Требования безопасности»;

• ГОСТ Р МЭК 61326-1-2014 «Национальный стандарт Российской Федерации. Оборудование электрическое для измерения, управления и лабораторного применения. Требования электромагнитной совместимости. Часть 1. Общие требования».

12 Маркировка

Маркировка блоков производится в соответствии с требованиями ГОСТ Р 12.2.091-2012 и располагается на задней панели устройств.

13 Указания мер безопасности

Блок необходимо оберегать от ударов, попадания в него пыли и влаги.

Монтаж и эксплуатация изделия должны производиться в соответствии с "Правилами технической эксплуатации электроустановок потребителей и Правилами техники безопасности при эксплуатации электроустановок потребителей" и "Правилами устройства электроустановок".

При обнаружении неисправности изделия необходимо вызвать квалифицированный обслуживающий персонал или отправить изделие производителю для диагностики и ремонта.

14 Транспортировка и хранение

Транспортирование Изделия должно осуществляться в упакованном виде в транспортной таре при условиях:

- температура окружающей среды от плюс 5°С до плюс 40°С;
- относительная влажность воздуха до 80% при температуре плюс 25°С;
- атмосферное давление от 60 до 107,0 кПа (от 450 до 800 мм рт. ст.);
- в закрытом транспорте любого типа.

Крепление на транспортных средствах должно исключать возможность перемещения изделий при транспортировке. Блоки в упаковке необходимо оберегать от установки на них других грузов массой более 5 кг.

Срок хранения не должен превышать гарантийного срока эксплуатации изделия. Хранение изделий допускается в отапливаемом вентилируемом помещении при температуре окружающего воздуха от +1 до +40 °С и относительной влажности до 80%.

15 Реализация и утилизация

Реализация оборудования осуществляется путем заключения договоров на поставку. Утилизация оборудования осуществляется в соответствии с требованиями и нормами России и стран-участников Таможенного союза. При утилизации оборудования в виде промышленных отходов вредного влияния на окружающую среду не оказывается.

16 Гарантийные обязательства

Предприятие-изготовитель гарантирует работоспособность Блоков при соблюдении пользователями условий эксплуатации, транспортировки и хранения.

Гарантийный срок эксплуатации 12 месяцев со дня передачи изделия потребителю.

В случае нарушения условий и правил эксплуатации в течение гарантийного срока потребитель лишается права на бесплатный гарантийный ремонт или замену.

Основаниями для снятия с гарантийного обслуживания являются:

1. механические повреждения (сколы, вмятины и т.п.) на корпусе или иной части оборудования, свидетельствующих об ударе;

2. следы попадания внутрь оборудования посторонних веществ, жидкостей, предметов, насекомых и грызунов;

3. признаки самостоятельного ремонта или вскрытия оборудования;

4. нарушение пломб, наклеек; замена деталей и комплектующих;

5. повреждения, возникшие из-за нарушения правил эксплуатации;

6. наличие повреждений, вызванных обстоятельствами непреодолимой силы.

17 Свидетельство о приемке

Штамп ОТК

18 Адрес изготовителя

Россия, 197101, Санкт-Петербург, ул. Кронверкская, д. 23 тел.: +7(812)490-77-99, E-mail: info@tract.ru